On the Validity of the Euler Lagrange Equation

نویسنده

  • ARRIGO CELLINA
چکیده

Under some regularity assumptions on the boundary datum u (assumptions automatically satisfied in the classical case when the growth of the integrand is bounded by a+ b‖ξ‖), we prove the validity of the Euler Lagrange equation for the functional

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An analytic study on the Euler-Lagrange equation arising in calculus of variations

The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...

متن کامل

On the validity of the Euler–Lagrange equation

The purpose of the present paper is to establish the validity of the Euler–Lagrange equation for the solution x̂ to the classical problem of the calculus of variations.  2004 Elsevier Inc. All rights reserved.

متن کامل

On the Bounded Slope Condition and the Validity of the Euler Lagrange Equation

Under the bounded slope condition on the boundary values of a minimization problem for a functional of the gradient of u, we show that a continuous minimizer w is, in fact, Lipschitzian. An application of this result to prove the validity of the Euler Lagrange equation for w is presented.

متن کامل

The analysis of a Beam Made of Physical Nonlinear Material on Elastic Foundation Under a Harmonic Load

  ABSTRACT: A prismatic beam made of a behaviorally nonlinear material situated on nonlinear elastic foundation is analyzed under a moving harmonic load moving with a known velocity. The vibration equation of motion    is derived using Hamilton principle and Euler Lagrange equation. The amplitude of vibration, circular frequency, bending moment, stress and deflection of the beam can be calculat...

متن کامل

The Higher Integrability and the Validity of the Euler-Lagrange Equation for Solutions to Variational Problems

We prove higher integrability properties of solutions to the problem of minimizing ∫ Ω L(x, u(x),∇u(x))dx, where ξ → L(x, u, ξ) is a convex function satisfying some additional conditions. As an application, we prove the validity of the Euler–Lagrange equation for a class of functionals with growth faster than exponential.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006